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We analyze the dynamics of competitions with a large number of players. In our model, n players
compete against each other and the winner is decided basedon the standings: in each competition,
the mth ranked player wins. We solve for the long time limit of the distribution of the number
of wins for all n and m using scaling analysis of the nonlinear evolution equations, and ¯nd three
di®erent scenarios. When the best player wins, the standings are most competitiv e as there is one-
tier with a clear di®erentiation betweenstrong and weak players. When an intermediate player wins,
the standings are two-tier with equally-strong players in the top tier and clearly-separated players
in the lower tier. Interestingly, the size and the strength of the upper-tier are nontrivial. When the
worst player wins, the standings are least competitiv e as there is one tier in which all of the players
are equal. We conclude that controling the rank of the winner provides a way of controling social
inequalities.

PACS numbers: 87.23.Ge, 02.50.Ey, 05.40.-a, 89.65.Ef

I. INTR ODUCTION

Interacting particle or agent-based techniques are a
central method in the physics of complex systems. This
methodology heavily relieson the dynamicsof the agents
or the interactions between the agents, as de¯ned on a
microscopic level [1]. In this respect, this approach is
orthogonal to the traditional game theoretic framework
that is basedon the global utilit y or function of the sys-
tem, as de¯ned on a macroscopiclevel [2].

Such physics-inspired approaches, where agents are
treated as particles in a physical system, have recently
led to quantitativ e predictions in a wide variety of so-
cial and economicsystems[3{5]. Current areasof inter-
est include the distribution of income and wealth [6{9],
opinion dynamics [10{12], the propagation of innovation
and ideas [13], and the emergenceof social hierarchies
[14{17].

In the latter example,most relevant to this study, com-
petition is the mechanism responsible for the emergence
of disparate social classesin human and animal commu-
nities. A recently intro ducedcompetition process[14, 17]
is basedon two-player competitions where the stronger
player wins with a ¯xed probabilit y and the weaker player
wins with a smaller probabilit y [18]. This theory has
proved to be useful for understanding major team sports
and for analysis of gameresults data [5].

In the variety of modelsof economics,wealth distribu-
tion, and social diversity mentioned above, the dynam-
ics are basedon agent-agent interactions. Typically, one
agent bene¯t from such interaction. How an agent, or
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competitor, fare in an interaction is typically a function
of their relative standingswith respect to the other com-
petitors. In some cases,the best agent bene¯t and in
others, the worst bene¯ts. However, there are also situ-
ations where there is a payo®for agents that are neither
the best nor the worst. This is the case for example
in second-priceauctions where the secondhighest bid-
der wins [19]. Similarly, in politics centrists are often
rewarded, while onestaking on extreme positions are pe-
nalized. Motiv ated by this, we considerthe most general
multi-agent interaction where the rank of the agent who
bene¯ts from social interaction or competition can be
speci¯ed to be any position from best to worst.

We consider multi-pla yer gamesand addressthe situ-
ation where the outcome of a game is completely deter-
ministic. Our modeling approach resembles urn mod-
els [20, 21] that have been used extensively to model
economic growth and social dynamics [22, 23]. In our
model, a large number of players n participate in the
game, and in each competition, the mth ranked player
always wins. The number of wins measuresthe strength
of a player. Furthermore, the distribution of the number
of wins characterizes the nature of the standings. We
addressthe time-evolution of this distribution using the
rate equation approach, and then, solve for the long-time
asymptotic behavior using scaling techniques.

We ¯nd that there are three typesof standings. When
the best player wins, m = 1, there is a clear notion of
player strength; the higher the ranking the larger the
winning rate. When an intermediate player wins, 1 <
m < n, the standingshave two tiers. Players in the lower
tier are well separated,but players in the upper-tier are
all equally strong. Interestingly, the sizeand the strength
of the upper-tier are nontrivial as they follow from roots
of polynomials of degreen + 1. When the weakest player
wins, m = n, the lower tier disappears and all of the
players are equal in strength. In this sense,when the
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best player wins, the environment is most competitiv e,
and whenthe worst player wins it is the leastcompetitiv e.

When the number of players is large, the size of the
upper-tier changesin a continuous fashion. The top tier
includes all players in one extreme caseand none of the
players in the other extreme case.Thus, oneof our main
conclusionis that by controlling the rank of the winning
player, onecan control the emergent social hierarchy and
in particular, the sizeand the strength of the upper-tier.

The rest of this paper is organized as follows. We in-
tro ducethe model in sectionI I. In SectionI I I, we analyze
in detail three-player competitions, addressingsituations
where the best, intermediate, and worst player wins, in
order. We then considergameswith an arbitrary number
of players and pay special attention to the large-n limit
in Section IV. We concludein section V.

I I. THE MUL TI-PLA YER MODEL

Our model system consistsof a large pool of N play-
ers that compete against each other in multi-pla yer com-
petitions. In each game, n competitors are randomly
drawn from the total pool of players. Thesecompetitors
are ranked from best to worst according to the number
of wins, and the mth ranked competitor is awarded the
win. The win totals are updated accordingly and this
basic competition processis repeated ad in¯nitum. Ini-
tially , all the players are equal as they all start with no
wins. Ties are handled in a completely random fashion:
when two or more players are tied, their relative rank-
ings are determined randomly. In other words, if ki is
the number of wins of the i th ranked competitor, i.e.,
k1 ¸ ¢¢¢¸ km ¸ ¢¢¢¸ kn , then the result of the compe-
tition is as follows

(k1; : : : ; km ; : : : kn ) ! (k1; : : : ; km + 1; : : : ; kn ): (1)

Initially , players start with no wins, k = 0.
We set the competition rate such that the number of

competitions in a unit time equals the total number of
players. Thence, each player participates in n gamesper
unit time, and furthermore, the averagenumber of wins
hki simply equalstime

hki = t: (2)

At large times, it is natural to analyze the winning rate,
that is, the number of wins normalized by time, x = k=t.
Similarly, from our de¯nition of the competition rate, the
averagewinning rate equalsone

hxi = 1: (3)

Our goal is to characterizehow the number of wins, or
alternativ ely, the winning rate are distributed in the long
time limit. We note that since the players are randomly
chosenin each competition, the number of gamesplayed
by a given player is a °uctuating quantit y. Nevertheless,

since this processis completely random, °uctuations in
the number of gamesplayed by a given player scaleasthe
square-root of time, and thus, these°uctuations become
irrelevant in the long time limit. Also, we consider the
thermodynamic limit, N ! 1 .

I I I. THREE PLA YER GAMES

We¯rst analyzethe three player case,n = 3, becauseit
nicely demonstratesthe full spectrum of possibilities. We
detail the three scenarioswhere the best, intermediate,
and worst, players win in order.

A. Best pla yer wins

Let us ¯rst analyzethe casewherethe bestplayer wins.
That is, if the number of wins of the three players are
k1 ¸ k2 ¸ k3, then the gameoutcome is as follows

(k1; k2; k3) ! (k1 + 1; k2; k3): (4)

Let f k (t) be the probabilit y distribution of playerswith
k ¸ 0 wins at time t. This distribution is properly nor-
malized,

P
k f k = 1, and it evolvesaccording to the non-

linear di®erence-di®erential equation

df k

dt
=

µ
3
1

¶
(f k ¡ 1F 2

k ¡ 1 ¡ f k F 2
k ) (5)

+
µ

3
2

¶
¡
f 2

k ¡ 1Fk ¡ 1 ¡ f 2
k Fk

¢

+
µ

3
3

¶
¡
f 3

k ¡ 1 ¡ f 3
k

¢
:

Here,weusedthe cumulativ edistributions Fk =
P k ¡ 1

j =0 f j

and Gk =
P 1

j = k+1 f j of players with ¯tness smaller than
and larger than k, respectively. The two cumulativ e dis-
tributions are of courserelated, Fk + Gk ¡ 1 = 1. The ¯rst
pair of terms accounts for gameswhere it is unambigu-
ous who the top player is. The next pair accounts for
two-way ties for ¯rst, and the last pair for three way ties.
Each pair of terms contains a gain term and a loss term
that di®er by a simple index shift. The binomial coe±-
cients account for the number of distinct ways there areto
choosethe players. For example, there are

¡ 3
1

¢
= 3 ways

to choose the top player in the ¯rst case. This master
equation should be solved subject to the initial condition
f k (0) = ±k ;0 and the boundary condition f ¡ 1(t) = 0. One
can verify by summing the equationsthat the total prob-
abilit y is conserved d

dt

P
k f k = 0, and that the average

¯tness hki =
P

k kf k evolvesas in (2), dhki =dt = 1.
For theoretical analysis, it is convenient to study the

cumulativ e distribution Fk . Summing the rate equations
(5), we obtain closedequationsfor the cumulativ e distri-
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bution

dFk

dt
= ¡ 3(Fk ¡ Fk ¡ 1)F 2

k ¡ 1 (6)

¡ 3(Fk ¡ Fk ¡ 1)2Fk ¡ 1

¡ (Fk ¡ Fk ¡ 1)3:

Here, we used f k = Fk+1 ¡ Fk . This master equation is
subject to the initial condition Fk (0) = 1 and the bound-
ary condition F¡ 1(t) = 0.

We are interested in the long time limit. Since the
number of wins is expected to grow linearly with time,
k » t, we may treat the number of wins as a continuous
variable, Fk ¡ 1 = Fk ¡ @F

@k + 1
2

@2 F
@k 2 + ¢¢¢. Asymptotically ,

since @F
@k / t ¡ 1 and @2 F

@k 2 / t ¡ 2, etc., second-and higher-
order terms becomenegligible compared with the ¯rst
order terms. To leading order, the cumulativ e distribu-
tion obeys the following partial di®erential equation

@F
@t

+ 3F 2 @F
@k

= 0: (7)

From dimensionalanalysisof this equation, we anticipate
that the cumulativ e distribution obeys the scaling form

Fk (t) ' ©(k=t) (8)

with the boundary conditions ©(0) = 0 and ©(1 ) = 1.
In other words, instead of concentrating on the number
of wins k, we focus on the winning rate x = k=t. In the
long time limit, the cumulativ e distribution of winning
rates ©(x) becomesstationary. Of course,the actual dis-
tribution of winning rates Á(x) also becomesstationary,
and it is related to the distribution of the number of wins
by the scaling transformation

f k (t) ' t ¡ 1Á(k=t) (9)

with Á(x) = ©0(x). Sincethe averagewinning rate equals
one (3), the distribution of winning rates must satisfy

1 =
Z 1

0
dx x ©0(x): (10)

Substituting the de¯nition (8) into the masterequation
(7), the stationary distribution satis¯es

©0(x)[3©2 ¡ x] = 0: (11)

There are two solutions: (i) The constant solu-
tion, ©(x) = const, and (ii) The algebraic solution
©s(x) = (x=3)1=3. Invoking the boundary condition
lim x !1 ©(x) = 1 we ¯nd [Fig. 1]

©(x) =

(
(x=3)1=2 x · 3
1 x ¸ 3:

(12)

One can verify that this stationary distribution satis-
¯es the constraint (10) so that the averagewinning rate
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FIG. 1: The stationary distribution of winning rates (12) for
the casen = 3, m = 1.

equalsone. This result generalizesthe linear stationary
distribution found for two player games[17].

Initially , all the players are identical, but by the ran-
dom competition process,someplayersend up at the top
of the standings and someat the bottom. Although our
model doesnot include the notion of intrinsic merit, the
random competition processis su±cient to generate a
hierarchy of players with di®erent strengths. Similar be-
havior was reported in a number of wealth distribution
studies [6{9]. The hierarchy in player strength directly
follows from the fact that the distribution of winning
rates is nontrivial. Also, sinceÁ(x) » x ¡ 1=2 asx ! 0, the
distribution of winning-rate is nonuniform and there are
many more players with very low winning rates. When
the number of players is ¯nite, a clear ranking emerges,
and every player wins at a di®erent rate. Moreover, after
a transient regime,the rankings do not changewith time.

Tie breakersplay an important role at short times since
the playersareall tied initially . However, tie-breakersbe-
comeirrelevant in the long time limit becausethe number
of wins grows linearly with time and therefore, the prob-
abilit y of ¯nding two players with the same number of
wins becomesnegligible. This is seenfrom the fact that
the terms corresponding to situations werethere is a two-
or three-way tie for ¯rst do not a®ectthe scaling behav-
ior. Moreover, the scaling behavior is unique becauseit
is governed by the term that corresponds to situations
where the three players have distinct strengths. For the
samereason, it is independent of the initial conditions.
Tie-breaking rules are necessaryto break the initial ties
and they a®ect how the distribution of the number of
wins approaches a stationary form, but they do not af-
fect the ¯nal form of the stationary distribution.

B. In termediate pla yer wins

Next, we address the case where the intermediate
player wins,

(k1; k2; k3) ! (k1; k2 + 1; k3): (13)
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Now, there are four terms in the master equation

df k

dt
=

µ
3
1

¶µ
2
1

¶
(f k ¡ 1Fk ¡ 1Gk ¡ 1 ¡ f k Fk Gk ) (14)

+
µ

3
1

¶
¡
f 2

k ¡ 1Gk ¡ 1 ¡ f 2
k Gk

¢

+
µ

3
2

¶
¡
f 2

k ¡ 1Fk ¡ 1 ¡ f 2
k Fk

¢

+
µ

3
3

¶
¡
f 3

k ¡ 1 ¡ f 3
k

¢
:

The ¯rst pair of terms accounts for situations wherethere
are no ties and then the combinatorial prefactor is a
product of the number of ways to choose the interme-
diate player times the number of ways to choosethe best
player. The next two pairs of terms account for situa-
tions where there is a two-way tie for best and worst,
respectively. Again, the last pair of terms accounts for
three-way ties. Theseequationsconserve the total prob-
abilit y,

P
k f k = 1, and they are also consistent with (2).

Summing the rate equations (14), we obtain closed
equations for the cumulativ e distribution

dFk

dt
= ¡ 6(Fk ¡ Fk ¡ 1)Fk ¡ 1Gk ¡ 1 (15)

¡ 3(Fk ¡ Fk ¡ 1)2(Fk ¡ 1 + Gk ¡ 1)

¡ (Fk ¡ Fk ¡ 1)3:

For clarit y, we useboth of the cumulativ e distributions,
but note that this equation is de¯nitely closedin Fk be-
causeof the relation Gk = 1 ¡ Fk+1 . Taking the con-
tinuum limit and keepingonly ¯rst-order derivatives,the
cumulativ e distribution obeysthe following partial di®er-
ential equation @F

@t + 6F (1 ¡ F ) @F
@k = 0 with the bound-

ary conditions F0 = 0 and lim k !1 Fk = 1. Substituting
the de¯nition of the stationary distribution of winning
rates (8) into this partial di®erential equation, we arrive
at

©0(x)[6©(1 ¡ ©) ¡ x] = 0; (16)

an equation that is subject to the boundary conditions
©(0) = 0 and lim x !1 ©(x) = 1. There are two so-
lutions: (i) The constant solution, ©(x) = const, and
(ii) The root of the second-orderpolynomial ©s(x) =
1
2

¡
1 ¡

p
1 ¡ 2x=3

¢
. Invoking the boundary conditions,

we conclude[Fig. 2]

©(x) =

(
1
2

³
1 ¡

q
1 ¡ 2

3 x
´

x < x0

1 x > x0:
(17)

As the nontrivial solution is bounded ©s(x) · 1=2, the
cumulativ e distribution must have a discontinuit y. We
have implicitly assumedthat this discontinuit y is located
at x0 < 3=2.

The location of this discontinuit y is dictated by the
averagenumber of wins constraint. Substituting the sta-
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FIG. 2: The stationary distribution of winning rates (17) for
n = 3, m = 2.

tionary distribution (17) into (10) then

1 =
Z x 0

0
dx x ©0(x) + x0[1 ¡ ©(x0)]:

In writing this equality, we utilized the fact that the sta-
tionary distribution has a discontinuit y at x0 and that
the size of this discontinuit y is 1 ¡ ©0. Integrating by
parts, we obtain an implicit equation for the location of
the discontinuit y

1 = x0 ¡
Z x 0

0
dx ©(x): (18)

Substituting the stationary solution (17) into this equa-
tion and performing the integration, we ¯nd after several
manipulations that the location of the singularity satis-
¯es the cubic equation x2

0

¡
x0 ¡ 9

8

¢
= 0. The location of

the discontinuit y is therefore

x0 =
9
8

: (19)

This completesthe solution (17) for the scaling function.
The sizeof the discontinuit y follows from ©0 ´ ©(x0) =
1=4. Interestingly, the sizeand the strength of the upper
classare not trivial.

There is an alternativ e way to ¯nd the location of the
discontinuit y. Let us transform the integration over x
into an integration over © using the equality

x0©0 =
Z x 0

0
dx ©(x) +

Z ©0

0
d© x(©): (20)

This transforms the equation for the location of the dis-
continuit y (18) into an equation for the sizeof the jump

1 = x0(1 ¡ ©0) +
Z ©0

0
d© x(©): (21)

Substituting x(©) = 6©(1 ¡ ©) we arrive at the cubic
equation for the variable ©0, 1 = 6©0 ¡ 9©2

0 + 4©3
0. The

relevant solution is ©0 = 1
4 , from which we conclude

x0 = 9=8. For three-player games, there is no partic-
ular advantage for either of the two approaches: both
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(18) and (21) involve cubic polynomials. However, in
general, the latter approach is superior becauseit does
not require an explicit solution for ©(x).

The scaling function corresponding to the win-number
distribution is therefore

Á(x) =
1
6

µ
1 ¡

2
3

x
¶ ¡ 1=2

+
3
4

±
µ

x ¡
9
8

¶
;

where ±(x) denotes the Kronecker delta function. The
win-number distribution contains two components. The
¯rst is a nontrivial distribution of players with winning
rate x < x0 and the secondre°ects that a ¯nite fraction
of the players have the maximal winning rate x = x0.
Thus, the standings have a two-tier structure. Players
in the lower tier have di®erent strengths and there is a
clear di®erentiation among them. Players in the upper-
tier are essentially equal in strength as they all win with
the samerate. A fraction ©0 = 1

4 belongsto the lower
tier and a complementary fraction 1¡ ©0 = 3

4 belongsto
the upper tier. Interestingly, the upper-tier has the form
of a condensate. We note that a condensate,located at
the bottom, rather than at the top as is the casehere,
was found in the diversity model in Ref. [17].

C. W orst pla yer wins

Last, we addressthe casewhere the worst player wins
[18, 24]

(k1; k2; k3) ! (k1; k2; k3 + 1): (22)

Here, the distribution of the number of wins evolvesac-
cording to

df k

dt
=

µ
3
1

¶
(f k ¡ 1G2

k ¡ 1 ¡ f k G2
k ) (23)

+
µ

3
2

¶
¡
f 2

k ¡ 1Gk ¡ 1 ¡ f 2
k Gk

¢

+
µ

3
3

¶
¡
f 3

k ¡ 1 ¡ f 3
k

¢
:

This equation is obtained from (5) simply by replacing
the cumulativ edistribution Fk with Gk . The closedequa-
tion for the cumulativ e distribution is now

dFk

dt
= ¡ 3(Fk ¡ Fk ¡ 1)G2

k ¡ 1 (24)

¡ 3(Fk ¡ Fk ¡ 1)2Gk ¡ 1

¡ (Fk ¡ Fk ¡ 1)3:

In the continuum limit, this equation becomes
@F
@t + 3(1 ¡ F )2 @F

@k = 0, and consequently , the stationary
distribution satis¯es

©0(x)[3(1 ¡ ©)2 ¡ x] = 0: (25)

Now, there is only one solution, the constant ©(x) =
const, and becauseof the boundary conditions ©(0) = 0
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FIG. 3: The stationary distribution of winning rates (26) for
the casen = m = 3.

and lim x !1 ©(x) = 1, the stationary distribution is a
step function: ©(x) = 1 for x > x0 and ©(x) = 0 for
x < x0. In other words, ©(x) = £( x ¡ x0). Substitut-
ing this form into the condition (10), the location of the
discontinuit y is simply x0 = 1, and therefore [Fig. 3]

©(x) = £( x ¡ 1) (26)

where £( x) is the Heaviside step function. When the
worst player wins, the standings no longer contain a
lower-tier: they consist only of an upper-tier where all
players have the samewinning rate, Á(x) = ±(x ¡ 1).

IV. ARBITRAR Y NUMBER OF PLA YERS

Let us now considerthe most generalcasewhere there
are n playersand the mth ranked player wins asin (1). It
is straightforward to generalizethe rate equationsfor the
cumulativ e distribution. Repeating the scaling analysis
above, Eqs. (11) and (16) for the stationary distribution
(8) generalizeas follows:

©0(x)[C©n ¡ m (1 ¡ ©)m ¡ 1 ¡ x] = 0: (27)

The constant C equalsthe number of ways to choosethe
mth ranked player times the number of ways to choose
the m ¡ 1 higher ranked players

C =
µ

n
1

¶µ
n ¡ 1
m ¡ 1

¶
=

n!
(n ¡ m)!(m ¡ 1)!

: (28)

Again, there are two solutions: (i) The constant solu-
tion, ©0(x) = 0, and (ii) The root of the (n ¡ 1)th-order
polynomial

C©n ¡ m (1 ¡ ©)m ¡ 1 = x: (29)

We now analyzethe three caseswhere the best, an inter-
mediate, and the worst player win, in order.
Best pla yer wins (m = 1): In this case,the stationary
distribution can be calculated analytically,

©(x) =

(
(x=n)1=(n ¡ 1) x · n;
1 x ¸ n:

(30)



6

One can verify that this solution is consistent with (3).
We seethat in general,when the best player wins there is
no discontinuit y and ©0 = 1. As for three-player games,
the standings consist of a single tier where someplayers
rank high and some rank low. Also, the winning rate
of the top players equals the number of players, x0 =
n. In general, the distribution of the number of wins is
algebraic.
In termediate pla yer wins (1 < m < n): Basedon the
behavior for three player games,we expect

©(x) =

(
©s(x) x < x0;
1 x ¸ x0:

(31)

Here, ©s(x) is the solution of (29). Numerical simula-
tions con¯rm this behavior [Fig. 4]. Thus, we conclude
that in general, there are two tiers. In the upper tier, all
players have the same winning rate, while in the lower
tier di®erent players win at di®erent rates. Generally, a
¯nite fraction ©0 belongsto the lower tier and the com-
plementary fraction 1 ¡ ©0 belongsto the upper tier.

Our Monte Carlo simulations are performed by simply
mimicking the competition process.The systemconsists
of a large number of playersN , all starting with no wins.
In each elemental step, n players are chosenat random
and ranked accordingto strength. Then, the mth ranked
player is awarded a win (tied playersare ranked in a ran-
dom fashion). Time is augmented by 1=N after each
such step. This elemental step is then repeated. Since
this simulation procedureinvolves individual agents and
since the players are chosen randomly, this is a Monte
Carlo method for solving the master equations. While it
is also possibleto usedirect numerical integration meth-
ods, we present the Monte Carlo results becausethis
method also allows simulation of systems with a small
number of agents.

The parametersx0 and ©0 characterize two important
properties: the maximal winning rate and the sizeof each
tier. Thus, we focuson the behavior of thesetwo parame-
ters and pay specialattention to the large-n limit. Substi-
tuting the stationary distribution (31) into the constraint
(10), the maximal winning rate x0 follows from the very
sameEq. (18). Similarly, the sizeof the lower tier follows
from Eq. (21). In this case,the latter is a polynomial of
degreen + 1, so numerically, one solves ¯rst for ©0 and
then uses(29) to obtain x0. We veri¯ed thesetheoretical
predictions for the casesn = 4 and n = 10 using Monte
Carlo simulations [Fig. 4].

For completeness,we mention that it is possible to
rewrite Eq. (21) in a compact form. Using the de¯nition
of the Beta function

Z 1

0
d© ©n ¡ m (1 ¡ ©)m ¡ 1 = B (n ¡ m + 1; m) (32)

=
(n ¡ m)!(m ¡ 1)!

n!
= C¡ 1
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FIG. 4: The stationary distribution of winning rates ©(x) for
n = 4 (top) and n = 10 (bottom). Shown are Monte Carlo
simulation results with N = 106 particles at time t = 105 .
The circles are the theoretical predictions for the maximal
winning rate x0 and the size of the lower tier ©0 .

we relate the de¯nite integral above with the combinato-
rial constant in (28). Substituting the governing equation
for the stationary distribution (29) into the equation for
the sizeof the lower-tier (21) gives

C¡ 1 = ©n ¡ m
0 (1¡ ©0)m +

Z ©0

0
d© ©n ¡ m (1¡ ©)m ¡ 1: (33)

Using the relation (32), we arrive at a convenient equa-
tion for the sizeof the lower tier ©0

Z 1

©0

d© ©n ¡ m (1 ¡ ©)m ¡ 1 = ©n ¡ m
0 (1 ¡ ©0)m : (34)

We conclude that in general, the size and the strength
of the upper-tier are non-trivial as they are roots of a
polynomial of degreen + 1.

Let us consider the limit n ! 1 and m ! 1 with
the ratio ® = m=n kept constant. For example, the case
® = 1=2 corresponds to the situation where the median
player is the winner. To solve the governing equation for
the stationary distribution in the large-n limit, we esti-
mate the combinatorial constant C using Eq. (28) and
the Stirling formula n! » (2¼n)1=2(n=e)n . Eq. (29) be-
comes

r
n®

2¼(1 ¡ ®)

µ
©

1 ¡ ®

¶ n ¡ m µ
1 ¡ ©

®

¶ m ¡ 1

» x: (35)
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Taking the power 1=n on both sides of this equation,
and then the limit n ! 1 , we arrive at the very simple
equation,

³ ©
1 ¡ ®

´ 1¡ ®³ 1 ¡ ©
®

´ ®
= 1: (36)

By inspection, the solution is constant, © = 1¡ ®. Using
©0 = 1 ¡ ® and employing the condition hxi = 1 yields
the location of the condensate

x0 = 1=®; ©0 = 1 ¡ ®: (37)

This result is consistent with the expected behaviors
x0 ! 1 as ® ! 0 and x0(® = 1) = 1 (see the worst
player wins discussion below). Therefore, the station-
ary distribution contains two steps when the number of
players participating in each gamediverges[Fig. 5]

©(x) =

8
><

>:

0 x < 0
1 ¡ ® 0 < x < ®¡ 1

1 ®¡ 1 < x:
(38)

The stationary distribution corresponding to the num-
ber of wins therefore consists of two delta-functions:
Á(x) = (1 ¡ ®)±(x) + ®±(x ¡ 1=®). Thus, as the number
of players participating in a game grows, the winning
rate of players in the lower tier diminishes, and eventu-
ally, they becomeindistinguishable.

For example, for n = 10, the quantit y ©0 is roughly
linear in ® and the maximal winning rate x0 is roughly
proportional to ®¡ 1 [Fig. 4]. Nevertheless, for moder-
ate n there are still signi¯cant deviations from the limit-
ing asymptotic behavior. A re¯ned asymptotic analysis
shows that ©0 ¡ (1 ¡ ®) »

p
®(1 ¡ ®) ln n=n and that

x0 ' (1 ¡ ©0)¡ 1 [25]. Therefore, the convergenceis slow
and nonuniform (i.e., ®-dependent). Despite the slow
convergence,the in¯nite- n limit is very instructiv e as it
shows that the structure of the lower-tier becomestrivial
as the number of players in a game becomesvery large.
It also shows that the sizeof the jump becomespropor-
tional to the rank of the winning player.

When the number of players is large, the sizeand the
strength of the upper tier changesin a continuous fash-
ion. When the top ranked player wins it contains all of
the players, while when the bottom ranked player wins
in contains none of the players. Since the size and the
strength of the top-tier changesin a continuous fashion,
these multi-pla yer dynamics provide a model system in
which one can control the nature of the social structure.

It is also possible to analytically obtain the station-
ary distribution in the limit of small winning rates,
x ! 0. Sincethe cumulativ edistribution is small, © ! 0,
the governing equation (29) can be approximated by
C©n ¡ m = x. As a result, the cumulativ e distribution
vanishesalgebraically

©(x) » x
1

n ¡ m ; (39)

as x ! 0. This behavior holds as long as m < n.

1 1/a
x

1-a

1

F

FIG. 5: The in¯nite- n limit. From Eq. (37), the points
(x0 ; ©0) all lie on the curve © = (x ¡ 1)=x (dashed line).

W orst pla yer wins (m = n): In this case,the roots of
the polynomial (29) are not physical becausethey cor-
respond to either monotonically increasing solutions or
they are larger than unit y. Thus, the only solution is
a constant and following the same reasoning as above
we conclude that the stationary distribution is the step
function (26). Again, the upper tier disappears and all
playershave the samewinning rate. In other words, there
is very strong parit y.

We note that while the winning rate of all players ap-
proaches the samevalue, there are still small di®erences
between players. Based on the behavior for two-player
games,we expect that the distribution of the number of
wins follows a traveling wave form Fk (t) ! U(k ¡ t) as
t ! 1 [5]. As the di®erencesamong the players are
small, the ranking continually evolves with time. Such
analysisis beyond the scope of the approach above. Nev-
ertheless,the dependenceon the number of players may
be quite interesting.

Let us imagine that wins represent wealth. Then, the
strong players are the rich and the the weak players are
the poor. Competitions in which the weakest player wins
mimic a strong welfare mechanism where the poor ben-
e¯ts from interactions with the rich. In such a scenario,
social inequalities are small.

V. CONCLUSIONS

In conclusion, we have studied multi-pla yer games
wherethe winner is decideddeterministically basedupon
the ranking. We focusedon the long time limit wheresit-
uations with two or more tied playersare generally irrele-
vant. We analyzedthe stationary distribution of winning
rates using scalinganalysisof the nonlinear master equa-
tions.

The shape of the stationary distribution re°ects three
qualitativ ely di®erent typesof behavior. When the best
player wins, there are clear di®erencesbetweenthe play-
ers as they advanceat di®erent rates. When an interme-
diate player wins, the standings are organized into two
tiers. The upper tier has the form of a condensatewith
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all of the top players winning at the samerate; in con-
trast, the lower tier players win at di®erent rates. In-
terestingly, the samequalitativ e behavior emergeswhen
the secondplayer wins as when the secondto last player
wins. When the worst player wins, all of the players are
equal in strength.

The sizeand the strength of the top-tier are the most
signi¯cant characteristic of the dynamics. These quan-
tities are found by imposing a condition for the average
winning rate, a quantit y that plays the role of an inte-
gral of motion. Thesequantities are generally nontrivial
as they follow from roots of polynomials of degreen + 1.

The behavior in the limit of an in¯nite number of play-
ersgreatly simpli¯es. In this limit, the changefrom upper
tier only standingsto lower tier only standingsoccursin a
continuousfashion. Moreover, the sizeof the upper tier is
simply proportional to the rank of the winner while the
maximal winning rate is inversely proportional to this
parameter.

In the context of sports competitions, theseresults are
consistent with our intuition. We view standings that
clearly di®erentiate the playersasa competitiv e environ-
ment. Then, having the best player win results in the
most competitiv e environment, while having the worst
player win leads to the least competitiv e environment.
As the rank of the winning player is varied from best to
worst, the environment is gradually changedfrom highly

competitiv e to non-competitiv e. This is the casebecause
the sizeof the competitiv e tier decreasesas the strength
of the winning player declines.

In the context of social dynamics, theseresults suggest
a way of controling social structure: by controling the
rank of the agent bene¯ting from social interactions, one
can control the social structure and in particular, the size
and the strength of the upper class.

Our asymptotic analysis focuses on the most basic
characteristic, the winning rate. However, there are in-
teresting questionsthat may beaskedwhentiers of equal-
strength players emerge. For example, the structure of
the upper tier can be further explored by characterizing
relative °uctuations in the strengths of the top players.
Similarly, the dynamical evolution of the ranking when
all players are equally strong may be interesting as well.
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